Run LLM very fast on on Low Cost Intel’s ARC GPU

Résumé

Unlock the Future of AI with Ubiclouder!

🚀 Accelerate Your AI Transformation for Less! 🚀

AI is not just a buzzword; it’s a game-changer. And when it comes to supercharging your AI journey, Ubiclouder is your ultimate partner!

🔥 Experience Lightning-Fast AI Acceleration! 🔥

🌟 Why Choose Ubiclouder for AI Transformation? 🌟

✅ Cutting-Edge Research: We’re pioneers in AI acceleration, tirelessly researching cost-effective methods to propel your AI projects to new heights!

✅ Intel Magic: Say goodbye to sky-high expenses! We’ve cracked the code to accelerate AI using the game-changing Intel accelerators. Get unparalleled speed without breaking the bank!

✅ Affordable Excellence: from just €350, AI accelerators is your entry ticket to AI supremacy. Invest wisely and reap the rewards of AI-driven success!

✅ Unleash Innovation: With Ubiclouder, innovation knows no bounds. Our AI acceleration solutions empower you to bring your boldest AI visions to life!

Don’t let your competitors steal the AI spotlight. Embrace the future with Ubiclouder and revolutionize your business with affordable, high-speed AI transformation!

📞 Contact us today to embark on your AI journey like never before. Let’s turn your AI dreams into reality! 💼

Email us or call us our phone is +35227997851 .

Ubiclouder – Where AI Transformation Meets Affordability! 💡

How run LLM on a low cost Intel Arc A770 graphic card ?

First, you need to install OneAPI.

Find the two following  directories and keep note of them:

  • \Intel\oneAPI\compiler\2023.2.0\windows\include\sycl
  • \Intel\oneAPI\intelpython\python3.9\envs\2023.2.0\Library\lib\OpenCL.lib
The opencl library will be used to accelerate calculation.

How to Install Install CLBlast accelerated with Intel arc A770 ?

Clone locally CLBlast 

Create a build directory

cmake .. -DOPENCL_INCLUDE_DIRS=”C:\Program Files (x86)\Intel\oneAPI\compiler\2023.2.0\windows\include\sycl” -DOPENCL_LIBRARIES=”C:\Program Files (x86)\Intel\oneAPI\intelpython\python3.9\envs\2023.2.0\Library\lib\OpenCL.lib”

 

Dans CLBlastConfig.cmake on ajoute les deux lignes suivantes:

set(CLBlast_INCLUDE_DIRS= “${CMAKE_CURRENT_LIST_DIR}/../include”)

set(CLBlast_LIBRARIES= “${CMAKE_CURRENT_LIST_DIR}/../lib/clblast.lib”)

 

cmake –build . –config Release

cmake –install . –prefix C:/CLBlast

This will install openblast compiled file in C:/CLBlast.

How to install Llama.cpp and compile llama.cpp with CLBlast accelerated with Intel arc A770 ?

Clone locally llama.cpp

Create a build directory

Dans CMakeLists, dans la partie CLBlast (if (LLAMA_CLBLAST), on ajoute 2 lignes et on commente une ligne:

#HP Ajouter

include_directories(“E:\OneDrive – UBI\IA_Pytorch\CLBlast\include” “C:\Program Files (x86)\Intel\oneAPI\compiler\2023.2.0\windows\include\sycl”)

#HP Ajouter

link_libraries(“E:\OneDrive – UBI\IA_Pytorch\CLBlast\lib” “C:\Program Files (x86)\Intel\oneAPI\intelpython\python3.9\envs\2023.2.0\Library\lib”)

#HP commenter set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast)

 

cmake .. -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=”C:\CLBlast”

cmake –build . –config Release

 

 

 

How to run your LLM by example Llama2 using low octs accelerated Intel Arc A770 graphic card ?

set GGML_OPENCL_PLATFORM=”Intel(R) OpenCL Graphics”

set GGML_OPENCL_DEVICE=”Intel(R) Arc(TM) A770 Graphics (ALL | GPU)”

./main -t 10 -ngl 100 -m “E:\OneDrive – UBI\IA_Pytorch\Models\llama-2-13b-chat.Q8_0.gguf” -c 2048 –temp 0.7 –repeat_penalty 1.1  –color –instruct –temp 0.8 –top_k 40 –top_p 0.95 –n_predict -1 –keep -1 -r “USER:” -p “

[INST] <<SYS>>\nYou’d like to present Ubiclouder AI services to a new prospect. Could you present an agneda for a powerpoint ? \n<</SYS>>[/INST]

Share Post:

Plus de nouvelles

innovation, PROTECT YOUR COMPANY, UbiClouder

Ahead of competition with an amazing Product Design! using Innoosy AI Booster

Innoosy will help your company to stay ahead of competitions. Innoosy is a synthesis of Design Thinking, TRIZ, Sustainable development, Digital Transformation and a tool based on Salesforce. By enhancing ideation with artificial intelligence and prioritizing on a structured evaluation, our tool ensures faster innovations and that resources are allocated to the projects that matter most.

Consultant Salesforce

Déployer toutes vos compétences d’architecte Salesforce ! Analyse des besoins des clients pour augmenter la performance avec la méthode Innoosy. Réalisation des paramétrages sur Salesforce

Développeur Salesforce

L’innovation par le code et la passion du beau code ! Vous aurez des missions variées entre Symfony, Angular/React/NodeJS, Salesforce, AWS avec les dernières technologies